A nationwide population-based study on incidence and cost of non-fatal injuries in Iran

ABSTRACT

Background: Elucidating the epidemiological status of injuries is a critical component of preventive strategies in countries with high incidence of injuries, like Iran. Population-based surveys are able to estimate all types of non-fatal injuries.

Objectives: This study protocol is the core unit in describing Iran’s national cost and epidemiology of non-fatal injuries, and also as a guide for other studies.

Study design and methods: In a cross-sectional study, 1525 primary sampling units are randomly selected with probability proportional to size regarding the number of households in each enumeration area based on Iran’s 2006 national census. Six of the households are randomly selected. One member of each household is chosen using a Kish Grid tables. In all, 9150 subjects are selected. Data on demographics are collected. For each injury, the number of households is recorded in a household in the population who consumes a disproportionate share of resources. Some studies focused on the cost of injury in older and paediatric populations as groups who consume a disproportionate share of resources. Others studied injuries caused by specific mechanisms, including motor vehicle accidents, because of their relatively high prevalence. Trauma is closely bound to the cost of injury. Recent studies have centred on evaluating the cost effectiveness of trauma centres and their readiness. Cost-saving approaches have been introduced since these studies. Injury and associated costs are under the spotlight around the world, and to a lesser extent, in the region.

Before this study, Iran’s national health surveys provided limited results on the frequency of injury. Our study protocol acts as a core unit in describing Iran’s national cost and epidemiology of non-fatal injuries, and also as a guide for other studies.

BACKGROUND

Injury is one of the main causes of morbidity and mortality in developed and developing countries. It accounts for around 10% of the total burden of diseases in the world. However, the first national burden of disease study shows that traffic injuries rank first among all causes in Iran. Besides this, falls and burns are also among the top 15 causes of burden of disease. What makes this more important is the fact that many injuries are preventable. Thus, revealing the pattern of injuries is of great importance for public health decision making in every country, from the point of view of the health system and the public sector. Elucidating the epidemiological status of injuries is a critical component for preventive strategies in countries with a high incidence of injuries, like Iran.

Different data sources might be used for studying the epidemiology of injuries. The occurrence of fatal injuries can be estimated by death records, fatal injury reporting systems or hospital-based databases. Injury surveillance data, hospital-based databases and trauma registries can be used to estimate non-fatal injuries. Less severe injuries which do not require hospitalisation or treatment in a medical facility will not be recorded in any of the above-mentioned data sources. Only population-based surveys are able to estimate all types of non-fatal injuries. Comparable population-based studies on the prevalence, incidence, severity and cost of injuries can be a useful aid for preventive programmes in developing countries. The outcomes can enlighten research priorities and guide healthcare system planning. Prior studies have suggested that every one out of three people will have an injury each year. The total cost per injury case was estimated to be from US$2700 to more than US$3500, with an indirect to total cost per injury ratio of more than 70%. Some studies focused on the cost of injury in older and paediatric populations as groups who consume a disproportionate share of resources. Others studied injuries caused by specific mechanisms, including motor vehicle accidents, because of their relatively high prevalence. Trauma is closely bound to the cost of injury. Recent studies have centred on evaluating the cost effectiveness of trauma centres and their readiness. Cost-saving approaches have been introduced since these studies. Injury and associated costs are under the spotlight around the world, and to a lesser extent, in the region.

Before this study, Iran’s national health surveys provided limited results on the frequency of injury. Our study protocol acts as a core unit in describing Iran’s national cost and epidemiology of non-fatal injuries, and also as a guide for other studies.

OBJECTIVES

1. Determine the annual incidence of non-fatal injuries in Iran.
2. Describe pictorial details of non-fatal injuries in Iran, from activities leading to injury to treatments resolving the injury.
3. Determine the annual cost of non-fatal injuries in Iran.
4. Describe the pictorial detail of non-fatal injury costs in Iran: who is paying, what amount of money is paid and what is the financial burden on households?
5. Evaluate determinants of non-fatal injuries and their cost in Iran.

METHODS

Iran is a large country located in the Middle East. According to Iran’s national census of population...
and housing 2006, Iran has a population of 70 495 782 and a total number of 17 501 771 households.²⁸

Study design and sampling

This study was carried out within the framework of Iran Mental Health Survey (Iran-MHS).²⁹ Iran-MHS is a cross-sectional household study of Iranians aged 15–64 years. A three-stage sampling scheme was used for this study. Primary sampling units (PSUs) were blocks for municipal areas and villages for non-municipal areas. In the first stage, 1523 PSUs were randomly selected with probability proportional to size regarding the number of households in each enumeration area based on Iran’s 2006 national census. At the second stage, the households living in each PSU were enumerated and six were selected by a systematic random sampling method. Finally, one member of each household was chosen using Kish Grid tables.³⁰ Thus, a total number of 9150 subjects were finally selected (table 1). Standardisation of the survey aspects including definitions, methods and measurements was performed through consultation with injury specialists and epidemiologists.

Sample size

A total of 6100 simple random samples fit the calculations of Iran-MHS. Considering the design effect of 1.2 for cluster sampling with six households in each cluster, and a response rate of 80% by taking absence of indexes despite multiple visits, 9150 subjects were finally selected. Table 2 demonstrates corresponding precision (d) for injury incidences ranging from 0.1% to 10%⁸¹ 0.²⁸ ¹⁰–¹³ ³¹ for a 95% CI (Z1−α/2 = 1.96).

Study variables and coding

Data on demographics including age, sex, marital status and residential areas were collected. Further information on years of full-time education, number of children, insurance type (primary vs complementary), employment and job status, and the annual income was also collected.

Subjects were asked to report the occurrence of any kind of injury (or injuries) regardless of its severity in the past 12 months and the past 3 months. For each injury occurring during the past 3 months, activity, place, mechanism, site, type and the place of treatment were described using the Short Form Injury Questionnaire 7 (SFIQ7) and were subsequently coded to match the International Classification of Diseases, 10th revision 2012 (ICD10-2012) classifications. SFIQ7 is a specifically designed questionnaire to be used in the Iran-MHS study and its validation has been described elsewhere.³² The total cost was ascertained in the categories direct cost, indirect cost, out of pocket payments and catastrophic expenditures.

Definitions of injury-related variables

1. **Activity**: activity is defined as work related if the case is directly paid (by salary, bonus and other types of income) for a specified activity during injury. In comparison, unpaid work relates to work without direct payment, like caring for children, cleaning, cooking, gardening, learning activities and housework. Sports-related activities are when one’s purpose is playing or doing physical exercise with a described functional element. Walking, riding two-wheel vehicles and driving four-wheel vehicles are defined separately. Recreational activities included actions taken for leisure time with an entertainment element and routine personal work like eating, taking a shower and sleeping. Conflicts are a result of human–human fights.

2. **Place of injury**: home covers residential houses and their surrounding area, excluding abandoned or derelict houses. Streets and highways include freeways, motorways, pavements and the sidewalks. Industrial and construction areas also include factories, workshops, under construction buildings or tunnels, dockyards, industrial yards, mines, oil rigs, offshore installations, pits, power stations and shipyards. Trade and service areas are chosen as commercial areas and transportation-related places, including airports, banks, cafés, gas stations, hotels, markets, office buildings, petrol stations, radio or television stations, restaurants, service stations, shops and warehouse. Sports and athletic areas include fields, courts, sports grounds, stadiums and gyms. Farm and natural environments include forests, beaches, campsites, deserts, harbours, hills, lakes, marshes, mountains, rivers and seas. Public administrative areas include buildings (and adjacent grounds) used by the general public or by a particular group, like public schools, colleges, galleries, assembly halls, churches, mosques, cinemas, court houses, hospitals, libraries, museums, post offices, theatres and universities.

3. **Mechanism of injury**: categorised using ICD10 blocks, under the menu of external causes of morbidity and mortality, including accidents (V01–X59) and intentional self-harm (X60–X84). Major indices are exposure to inanimate mechanical forces (ICD10: W20; W49), falls (ICD10: W00; W19), exposure to animate mechanical forces (ICD10: W50; W64), contact with heat and hot substances (ICD10: X10; X19), occupant of four-wheeled motor vehicle injured in transport accident (ICD10: V40; V79), motorcycle rider or pedal cyclist injured in transport accident (ICD10: V20; V29), pedestrians injured in transport accident (ICD10: V01; V09), exposure to electric current, radiation and extreme ambient air temperature and pressure (ICD10: W85; W99), intentional self-harm (ICD10: X60; X84), and two codes which further help us in categorising mechanisms: non-medicinal toxic effects of substances (ICD10: T51; T65) and effects of heat and light (ICD1: T67).

4. **Site of injury**: categorised using ICD10 S00–S99 codes under the menu of injury, poisoning and certain other consequences of external causes. Our major groups are head (ICD10: S00; S09), thorax (ICD10: S10; S29), abdomen, lower back, lumbar spine and pelvis (ICD10: S30; S39), shoulder and upper arm (ICD10: S40; S49), elbow and forearm (ICD10: S50; S59), wrist and hand (ICD10: S60; S69), hip and thigh (ICD10: S70; S79), knee and lower leg (ICD10: S80; S89), ankle and foot (ICD10: S90; S99). Moreover, we used three other blocks involving T00–T65 codes for further clarification of the following conditions: injuries involving multiple body regions (ICD10: T00; T07), foreign body entering through natural orifice (ICD10: T15; T19), toxic effects of substances chiefly non-medicinal (ICD10: T51; T65).

5. **Type of injury**: using ICD10 descriptions of S00–S99 codes with modifications, types of injuries are categorised as follows: superficial injury (differentiating cuts and others), laceration, puncture by external objects, sprain and strain, tendon rupture, dislocation, fracture, traumatic amputation, burn and corrosion, toxicity (allergic, respiratory, gastrointestinal) and bite (animals and insects).

6. **Place where treatment was obtained**: considering possibilities and further help by the pilot study, the following categories are defined. We consider the highest level of health
Table 1 Population and household description based on 2006 national consensus, along with the visited households from each province

<table>
<thead>
<tr>
<th>Province</th>
<th>Total population</th>
<th>15–64-year-old population (eligible)</th>
<th>Total households</th>
<th>Residing households (eligible)</th>
<th>Visited households</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall</td>
<td>70 495 782</td>
<td>49 157 562 (100%)</td>
<td>17 501 771</td>
<td>17 331 365 (100%)</td>
<td>9150 (100%)</td>
</tr>
<tr>
<td>1. Markazi</td>
<td>1 351 257</td>
<td>945 368 (1.92%)</td>
<td>364 564</td>
<td>359 765 (2.08%)</td>
<td>174 (1.90%)</td>
</tr>
<tr>
<td>2. Gilan</td>
<td>2 404 861</td>
<td>1 718 228 (3.50%)</td>
<td>669 695</td>
<td>666 021 (3.84%)</td>
<td>312 (3.41%)</td>
</tr>
<tr>
<td>3. Mazandaran</td>
<td>2 922 432</td>
<td>2 124 616 (4.32%)</td>
<td>783 737</td>
<td>775 695 (4.48%)</td>
<td>378 (4.13%)</td>
</tr>
<tr>
<td>4. East Azarbaijan</td>
<td>3 603 456</td>
<td>2 544 059 (5.18%)</td>
<td>911 930</td>
<td>905 992 (5.23%)</td>
<td>462 (5.05%)</td>
</tr>
<tr>
<td>5. West Azarbaijan</td>
<td>2 873 459</td>
<td>1 937 562 (3.94%)</td>
<td>655 961</td>
<td>652 108 (3.76%)</td>
<td>366 (4.00%)</td>
</tr>
<tr>
<td>6. Kermansh</td>
<td>1 879 385</td>
<td>1 320 805 (2.69%)</td>
<td>445 863</td>
<td>442 830 (2.56%)</td>
<td>246 (2.69%)</td>
</tr>
<tr>
<td>7. Khuzestan</td>
<td>4 274 979</td>
<td>2 891 965 (5.88%)</td>
<td>866 914</td>
<td>857 624 (4.95%)</td>
<td>552 (6.03%)</td>
</tr>
<tr>
<td>8. Fars</td>
<td>4 336 878</td>
<td>3 075 626 (6.26%)</td>
<td>1 022 746</td>
<td>1 005 032 (5.80%)</td>
<td>558 (6.10%)</td>
</tr>
<tr>
<td>9. Kerman</td>
<td>2 652 413</td>
<td>1 776 341 (3.61%)</td>
<td>615 936</td>
<td>606 348 (3.50%)</td>
<td>336 (3.67%)</td>
</tr>
<tr>
<td>10. Khorasan rzavi</td>
<td>5 593 079</td>
<td>3 784 510 (7.70%)</td>
<td>1 427 516</td>
<td>1 419 222 (8.19%)</td>
<td>726 (7.93%)</td>
</tr>
<tr>
<td>11. Isfahan</td>
<td>4 559 256</td>
<td>2 881 245 (6.69%)</td>
<td>1 224 763</td>
<td>1 216 105 (7.02%)</td>
<td>594 (6.69%)</td>
</tr>
<tr>
<td>12. Sirjan and Baluchestan</td>
<td>2 405 742</td>
<td>1 400 207 (2.85%)</td>
<td>470 064</td>
<td>465 995 (2.69%)</td>
<td>324 (3.54%)</td>
</tr>
<tr>
<td>13. Kurdistan</td>
<td>1 440 156</td>
<td>985 847 (2.01%)</td>
<td>337 688</td>
<td>335 346 (1.93%)</td>
<td>186 (2.03%)</td>
</tr>
<tr>
<td>14. Hamedan</td>
<td>1 703 267</td>
<td>1 185 419 (2.41%)</td>
<td>428 289</td>
<td>425 346 (2.45%)</td>
<td>216 (2.36%)</td>
</tr>
<tr>
<td>15. Char-mahal Bakhtiari</td>
<td>857 910</td>
<td>581 389 (1.18%)</td>
<td>194 594</td>
<td>193 396 (1.12%)</td>
<td>114 (1.25%)</td>
</tr>
<tr>
<td>16. Lorestan</td>
<td>1 716 527</td>
<td>1 178 488 (2.40%)</td>
<td>384 099</td>
<td>380 876 (2.20%)</td>
<td>228 (2.49%)</td>
</tr>
<tr>
<td>17. Ilam</td>
<td>545 787</td>
<td>382 593 (0.78%)</td>
<td>111 560</td>
<td>109 664 (0.63%)</td>
<td>66 (0.72%)</td>
</tr>
<tr>
<td>18. Kugiluyeh-Buyrahmad</td>
<td>634 299</td>
<td>423 580 (0.86%)</td>
<td>126 514</td>
<td>124 228 (0.72%)</td>
<td>84 (0.92%)</td>
</tr>
<tr>
<td>19. Bushehr</td>
<td>886 267</td>
<td>622 576 (1.27%)</td>
<td>190 150</td>
<td>183 526 (1.06%)</td>
<td>120 (1.31%)</td>
</tr>
<tr>
<td>20. Zanjan</td>
<td>964 601</td>
<td>663 339 (1.35%)</td>
<td>236 117</td>
<td>233 888 (1.35%)</td>
<td>126 (1.38%)</td>
</tr>
<tr>
<td>21. Semnan</td>
<td>589 742</td>
<td>420 663 (0.86%)</td>
<td>160 062</td>
<td>156 402 (0.90%)</td>
<td>78 (0.85%)</td>
</tr>
<tr>
<td>22. Yazd</td>
<td>990 818</td>
<td>692 119 (1.41%)</td>
<td>259 095</td>
<td>254 487 (1.47%)</td>
<td>132 (1.44%)</td>
</tr>
<tr>
<td>23. Hormozgan</td>
<td>1 403 674</td>
<td>912 403 (1.86%)</td>
<td>304 513</td>
<td>297 202 (1.71%)</td>
<td>186 (2.03%)</td>
</tr>
<tr>
<td>24. Tehran</td>
<td>13 422 366</td>
<td>8 882 447 (20.10%)</td>
<td>3 730 396</td>
<td>3 697 818 (21.34%)</td>
<td>1746 (19.08%)</td>
</tr>
<tr>
<td>25. Ardabil</td>
<td>1 228 155</td>
<td>837 539 (1.70%)</td>
<td>281 901</td>
<td>279 511 (1.61%)</td>
<td>162 (1.77%)</td>
</tr>
<tr>
<td>26. Ghom</td>
<td>1 046 737</td>
<td>723 133 (1.47%)</td>
<td>262 477</td>
<td>261 582 (1.51%)</td>
<td>138 (1.51%)</td>
</tr>
<tr>
<td>27. Ghazvin</td>
<td>1 143 200</td>
<td>806 997 (1.64%)</td>
<td>294 539</td>
<td>292 252 (1.69%)</td>
<td>150 (1.64%)</td>
</tr>
<tr>
<td>28. Golestan</td>
<td>1 617 087</td>
<td>1 108 179 (2.25%)</td>
<td>380 244</td>
<td>377 910 (2.18%)</td>
<td>210 (2.30%)</td>
</tr>
<tr>
<td>29. North Khorasan</td>
<td>811 572</td>
<td>533 257 (1.08%)</td>
<td>199 850</td>
<td>197 466 (1.14%)</td>
<td>102 (1.11%)</td>
</tr>
<tr>
<td>30. South Khorasan</td>
<td>636 420</td>
<td>409 795 (0.83%)</td>
<td>159 994</td>
<td>157 557 (0.91%)</td>
<td>78 (0.85%)</td>
</tr>
</tbody>
</table>

8. Direct costs: actual cash paid either for medical or non-medical issues to assess the care for injury using details of the exact care or service and the exact amount. The questionnaire has three parts including pre-hospital (or the place medical care was obtained), hospital and post-hospital periods. The participants are asked about money paid directly for visits, ambulatory services, drugs, dressings, casts and splintings, imaging modalities, laboratory exams, nursing, rehabilitation, travelling and trafficking, hotels and any other direct payments.

9. Indirect costs: calculated by taking income (converted to daily income) of individual multiplied by work days missed due to the reported injury. The same question is asked to cover anyone accompanying the patient who may have missed some days at work.

10. Out-of-pocket costs: the amount paid by insurance and the type of insurance.

11. Financial load of the costs (imposed on the family): assessed on a 0–100 scale: 100 refers to losing all of the family’s savings (loans, selling properties); 75 means spending all of the family’s savings; 50 means using all the monthly income of the family; 25 means more than half of the monthly income of the family is consumed; 0 means there was no charge. We define a score of 75 and higher as ‘catastrophic payment’. To reveal the actual costs, the caretaker of the family is asked to answer the questions.

First part of survey: interviews about the incidence of injury

Interviewers were selected from provincial health centres in each region. They participated in a 1-week training course to learn the sampling procedures, data collection tools and
reporting forms. In each province there were two field managers responsible for monitoring the field procedures, reviewing the questionnaires and submitting the data to the national coordinating centre. There was also a national supervisor for each province who was responsible for auditing the field procedures and reviewing the submitted questionnaires and reports. Each interviewer team included one male and one female interviewer. At each given block, the interviewer team enumerated the number of residential houses and selected six houses based on a systematic random sampling method. They approached each household on at least three separate dates, with at least one of them being at the weekend. If a selected house was non-residential then the next nearest house would be selected, in a clockwise manner. When the interview team contacted a person in the selected house for the first time they introduced themselves using an identification card and briefly described the project while delivering an introductory pamphlet. Next, they assessed the eligibility criteria of the household members. Then, they set an appointment time for the interview with the selected member. The non-contact or non-respondent households or subjects were not replaced in the sampling procedure since these cases were already considered in sample size calculation. The demographics and all the injury-related data except for costs were obtained during the in-person interview. The questionnaires and reports were sent to the national coordinating centre and the data entry procedures were carried out at the national level.

Second part of the survey: phone calls on cost of injuries
After finalising the first part of the survey, subjects who reported having an injury which made them seek medical care from a healthcare provider were extracted from the database. These cases were contacted by telephone to obtain data on injury costs. All telephone calls were made at the national coordinating centre by trained interviewers. Non-contact was defined as when the telephone was not answered on three separate attempts on different days.

Quality control, quality assurance
For the purpose of quality control, all gathered data were checked twice by the provincial manager and the national supervisor. During the first part of the survey, 5% of the questionnaires were randomly selected by the national coordinating centre to check the obtained responses, including demographics and injury data. When data editing was necessary, all interviewers, field managers and national supervisors were asked to cross out and highlight the changes while avoiding overwriting the original data. Changes were recorded according to the time and the editor’s name. In the second part of the survey, all subjects with an injury which made them seek medical care were called. Details on the injury data were again checked for all cases before obtaining cost data.

Data entry and data cleaning
Data were entered using SPSS software (V16; Chicago, Illinois, USA). Ten percent of the data were double entered to calculate the error rate. Data cleaning was performed by the national supervisors. Missing and erroneous data were reclarified.

Sampling weights and statistical analysis
Sampling weights were calculated so that data for each respondent could be inflated to represent other individuals in Iran. These sampling weights were produced in three steps. First, sampling weights were obtained which were inverse probabilities of unit selection of the sample. Second, the weight for adjustment of non-response was calculated. Third, post-stratification weights for adjustment of age, gender, and urban/rural status for each individual were produced by comparing the sample with the National Census 2006.

Descriptive and frequency analyses of the study variables were performed. The annual incidence of all types of injury and the type of care obtained were derived. Nationwide costs of injuries were determined in total and according to different types of injuries and different types of insurance. Further, regression analysis revealed the association between age, gender and demographic variables with the incidence and costs of injuries, all differentiated by the category of the injury.

Ethical issues
This study was approved by the ethical committee of Tehran University of Medical Sciences and the Iran’s National Institute of Health Research. The participants were completely informed about the study in their native language. They were free not to participate in the study if they so wished. The confidentiality of all participants’ information was maintained through our epidemiological approach.

DISCUSSION
Iran’s national injury survey is a cross-sectional population-based study, which has almost the same methodology as part of the multi-domain study of Iran-MHS. This study protocol describes the design, sampling and classification of the epidemiology and costs of injuries. Our forthcoming objectives are the present impact of injury and the future priorities of injury preventive programmes in Iran.

Author affiliations
1 Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences (TUMS), Tehran, Iran
2 Students Scientific Research Center (SSRC), Tehran University of Medical Sciences (TUMS), Tehran, Iran
3 Iranian Research Center for HIV/AIDS (IRCHA), Tehran University of Medical Sciences (TUMS), Imam Khomeini Hospital Complex, Tehran, Iran
4 Iranian National Center for Addiction Studies (INCAS), Iranian Institute for Reduction of High-Risk Behaviors, Tehran University of Medical Science (TUMS), Tehran, Iran
5 School of Public Health, Iran University of Medical Sciences (IUMS), Tehran, Iran
6 Department of Psychiatry, Roozbeh Hospital, Tehran University of Medical Sciences (TUMS), Tehran, Iran
7 Mental Health Research Center, Tehran Institute of Psychiatry- Faculty of Behavioral Sciences and Mental Health, Iran University of Medical Sciences (TUMS), Tehran, Iran
8 Saul B. Korey Department of Neurology, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY, USA.

Acknowledgements The authors would like to thank Ms Bita Pourmand for her careful editing of the manuscript.

Contributors NH-N: participated in research design, analysis of data, interpretation and preparation of final report. AR-M, AM, MA-E, VS, AH, RR and MH: had a major role in data gathering, trained research assistants, study design and final approval of the manuscript; proofread the data from all provinces and approved the completed data to be gathered in the central data bank; reviewed the analysis. VE: contributed to finalising and editing the data, preparing the report, interpreting the results and final approval of the manuscript. SS: along with Abbas Motevalian, was epidemiologist and biostatistician; made major contribution to study design, weighting the population to represent Iranian general population; audited the process, final analysis and statistical derivation of the manuscript, and final approval of the text. VR-M: chief director of the study; participated in handling the data from all provinces of Iran along with AR-M; contributed primary idea and design of the study and questionnaires, approved the analysis, aided in writing the manuscript, edited and made final approval of text.
Funding This study was supported by grant number 241-M-482 /11.1.2010 of Iran’s National Institute of Health Research; Injury Prevention and Safety Promotion Department, Disaster and Emergency Management Center, Deputy of Health, Ministry of Health and Medical Education of Iran; and Sina Trauma and Surgery Research Center (STSRC), Tehran University of Medical Sciences (TUMS), Tehran, Iran. The corresponding author received the grant. This paper was extracted from the thesis of Dr. Nima Hafezi-Nejad (Registration number 21654), under guidance of Professor Vafa Rahimi-Movaghar, to achieve a degree in General Medicine (MD) and Master of Public Health (MPH).

Competing interests None.

Ethics approval The Ethical Board of the Tehran University of Medical Sciences (TUMS).

Provenance and peer review Not commissioned; externally peer reviewed.

Data sharing statement The raw data and the primary analyses of the results are available on SPSS files (also in English). Any proposals for cooperation and mutual studies are welcomed.

REFERENCES

Study protocol
A nationwide population-based study on incidence and cost of non-fatal injuries in Iran

Inj Prev published online February 20, 2014
doi: 10.1136/injuryprev-2013-041127

Updated information and services can be found at:
http://injuryprevention.bmj.com/content/early/2014/02/20/injuryprev-2013-041127.full.html

These include:

References
This article cites 30 articles, 1 of which can be accessed free at:
http://injuryprevention.bmj.com/content/early/2014/02/20/injuryprev-2013-041127.full.html#ref-list-1

PnP
Published online February 20, 2014 in advance of the print journal.

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections

- Epidemiologic studies (784 articles)

Notes

Advance online articles have been peer reviewed, accepted for publication, edited and typeset, but have not yet appeared in the paper journal. Advance online articles are citable and establish publication priority; they are indexed by PubMed from initial publication. Citations to Advance online articles must include the digital object identifier (DOIs) and date of initial publication.

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/